A new species of Physarum (Myxomycetes) from Christmas Island (Australia)

S. L. Stephenson, Yu. K. Novozhilov, I. S. Prikhodko

DOI: https://doi.org/10.31111/nsnr/2020.54.2.397


A new species of Physarum (Myxomycetes), described herein as P. australiense, appeared on a sample of aerial litter in a moist chamber culture prepared as part of a survey of the myxomycetes of Christmas Island in the Indian Ocean. The morphology of representative sporocarps was examined by light and scanning electron microscopy, and micrographs of relevant morphological details of sporocarps and spores are provided. The species is characterized by distinct and unique morphological features, including brownish-red lime knobs or large squamae on the surface of the single layered peridium, a limeless brittle, black stalk, a large clavate columella that attains the center of the sporotheca, and a capillitium with large white angular or rod-like nodes. The combination of these characteristics makes P. australiense a well-defined morphospecies when compared to all other species of Physarum. In addition to the morphological description, partial sequences of three genetic markers of this new species (SSU, EF1α, and COI) were obtained and submitted to GenBank. Phylogeny, based on the small ribosomal subunit gene (SSU), indicates an affinity of the new species with P. bogoriense and P. hongkongense.

Key words: Amoebozoa, Myxogastria, fungi-like protists, molecular phylogeny, slime molds, taxonomy, Australia

Section: Fungi

How to cite

Stephenson S. L., Novozhilov Yu. K., Prikhodko I. S. 2020. A new species of Physarum (Myxomycetes) from Christmas Island (Australia). Novosti sistematiki nizshikh rastenii 54(2): 397–404. https://doi.org/10.31111/nsnr/2020.54.2.397


Anonymous. 2007. NBS/ISCC Color System. https://web.archive.org/web/20171219173446/http://tx4.us/nbs/nbs-i.htm (Date of access: 11 VII 2020).

Bortnikov F. M., Shchepin O. N., Gmoshinskiy V. I., Prikhodko I. S., Novozhilov Y. K. 2018. Diderma velutinum, a new species of Diderma (Myxomycetes) with large columella and triple peridium from Russia. Botanica Pacifica: a journal of plant science and conservation 7(2): 47–51. https://doi.org/10.17581/bp.2018.07207

Chung C.-H., Tzean S.-S. 1998. Observations on Physarum hongkongense (Phy sarales, Myxomycetes) from Taiwan. Fungal Science 13(3–4): 109–112. https://doi.org/10.7099/FS.199812.0109

Hoang D. T., Chernomor O., von Haeseler A., Minh B. Q., Vinh L. S. 2018. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution 35(2): 518–522. https://doi.org/10.1093/molbev/msx281

Feng Y., Schnittler M. 2015. Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). Organisms Diversity and Evolution 15: 631–650. https://doi.org/10.1007/s13127-015-0230-x

Fiore-Donno A.-M., Meyer M., Baldauf S. L., Pawlowski J. 2008. Evolution of dark-spored Myxomycetes (slime-molds): Molecules versus morphology. Molecular Phylogenetics and Evolution 46(3): 878–889. https://doi.org/10.1016/j.ympev.2007.12.011

Fiore-Donno A. M., Novozhilov Y. K., Meyer M., Schnittler M. 2011. Genetic structure of two protist species (Myxogastria, Amoebozoa) suggests asexual reproduction in sexual amoebae. PLoS One 6(8): e22872. https://doi.org/10.1371/journal.pone.0022872

Fiore-Donno A. M., Kamono A., Meyer M., Schnittler M., Fukui M., Cavalier-Smith T. 2012. 18S rDNA phylogeny of Lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa). PLoS One 7(4): e35359. https://doi.org/10.1371/journal.pone.0035359

Huelsenbeck J. P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Katoh K., Standley D. M. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010

Katoh K., Rozewicki J., Yamada K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108

Lado C. 2005–2020. An on line nomenclatural information system of Eumycetozoa. http://www.nomen.eumycetozoa.com (Date of access: 11 VII 2020).

Leontyev D. V., Schnittler M., Stephenson S. L., Novozhilov Y. K., Shchepin O. N. 2019. Towards a phylogenetic classification of the Myxomycetes. Phytotaxa 399(3): 209–238. https://doi.org/10.11646/phytotaxa.399.3.5

Lister A., Lister G. 1905. Mycetozoa from New Zealand. The Journal of botany, British and Foreign 43: 111–114.

McHugh R., Stephenson S. L., Mitchell D. W., Brims M. H. 2003. New records of Australian Myxomycota. New Zealand Journal of Botany 41(3): 487–500. https://doi.org/10.1080/0028825X.2003.9512865

Martin G. W., Alexopoulos C. J. 1969. The Myxomycetes. Iowa City: 561 p.

Miller M. A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE): 1–8. https://doi.org/10.1109/GCE.2010.5676129

Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300

Novozhilov Y. K., Okun M. V., Erastova D. A., Shchepin O. N., Zemlyanskaya I. V., García-Carvajal E., Schnittler M. 2013. Description, culture and phylogenetic position of a new xerotolerant species of Physarum. Mycologia 105(6): 1535–1546. https://doi.org/10.3852/12-284

Novozhilov Y. K., Prikhodko I. S., Shchepin O. N. 2019. A new species of Diderma from Bidoup Nui Ba National Park (southern Vietnam). Protistology 13(3): 126–132. https://doi.org/10.21685/1680-0826-2019-13-3-2

Okonechnikov K., Golosova O., Fursov M. 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8): 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

Petch T. 1909. New Ceylon Fungi. Annals Royal Botanical Gardens, Peradeniya 4: 299–371.

Raciborski M. 1898. Über die Javanischen Schleimpilze. Hedwigia 37: 50–55.

Rambaut A., Drummond A. J., Xie D., Baele G., Suchard M. A. 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/syy032

Schnittler M., Shchepin O. N., Dagamac N. H. A., Borg Dahl M., Novozhilov Y. K. 2017. Barcoding myxomycetes with molecular markers: challenges and opportunities. Nova Hedwigia 104(1–3): 323–341. https://doi.org/101127/nova_hedwigia/2017/0397

Shchepin O. N., Schnittler M., Dagamac N. H. A., Leontyev D. V., Novozhilov Y. K. 2019. Unexplored diversity of the tiniest myxomycetes: evidences from environmental DNA. Plant Ecology and Evolution 152(3): 499–506. https://doi.org/10.5091/plecevo.2019.1621

Stephenson S. L., Stempen H. 1994. Myxomycetes: a Handbook of Slime Molds. Portland, Oregon: 183 p.

Whitney K. D., Keller H. W. 1982. A new species of Badhamia, with notes on Physarum bogoriense. Mycologia 74(4): 619–624. https://doi.org/10.1080/00275514.1982.12021558

Winsett K. E., Stephenson S. L. 2008. Using ITS sequences to assess intraspecific genetic relationships among geographically separated collections of the myxomycete Didymium squamulosum. Revista Mexicana de Micología 27: 59–65.

Yamamoto Y. 2000. Notes on Japanese myxomycetes (IV). Bulletin of the National Science Museum Tokyo, Series B 26(3): 107–122.

Supplementary materials

Supplement 1. The list of sporocarp specimens used for DNA extraction and sequencing to obtain the gene tree.

Supplement 2. SSU rDNA gene tree.