Paxillus cuprinus (Agaricomycota, Boletales, Paxillaceae), первая находка плодовых тел в России


Е. Ф. Малышева, В. Ф. Малышева


DOI: https://doi.org/10.31111/nsnr/2022.56.2.323


Резюме

Образцы Paxillus cuprinus, вида, недавно описанного из комплекса P. involutus и характеризующегося менее массивными, тускло окрашенными базидиомами с более тонкими ножками, а также более длинными спорами, были собраны авторами во время экспедиции на Южный Урал (Республика Башкортостан). Исследованная коллекция представляет собой первую находку базидиом вида в России. Идентичность коллекции была подтверждена молекулярными данными (анализ последовательностей nrITS и tef1) и морфологией. Приводится полное описание и иллюстрации образцов, а также результаты филогенетического анализа.


Ключевые слова: Paxillus cuprinus, Boletales, таксономия, Южный Урал.


Рубрика: Грибы


Цитирование статьи

Малышева Е. Ф., Малышева В. Ф. 2022. Paxillus cuprinus (Agaricomycota, Boletales, Paxillaceae), первая находка плодовых тел в России. Новости систематики низших растений 56(2): 323–332. https://doi.org/10.31111/nsnr/2022.56.2.323


Литература

Anthowiak R., Anthowiak W. Z., Banczyk I., Mikolajczyk L. 2003. A new phenolic metabolite, involutone, isolated from the mushroom Paxillus involutus. Canadian Journal of Chemistry 81: 118–124. https://doi.org/10.1139/v02-194

Bolshakov S., Kalinina L., Palomozhnykh E., Potapov K., Ageyev D., Arslanov S., Filippova N., Palamarchuk M., Tomchin D., Voronina E. 2021. Agaricoid and boletoid fungi of Russia: the mo­dern country-scale checklist of scientific names based on literature data. Communications Biology 66(4): 316–325. https://doi.org/10.21638/spbu03.2021.404

Bresinsky A. 2006. Observations on mycobiota in Estonia. Folia Cryptogamica Estonica 42:1–9.

Clémençon H. 2009. Methods for working with macrofungi. Laboratory cultivation and preparation of large fungi for light microscopy. IHW-Verlag: 88 p.

Fries N. 1985. Intersterility groups in Paxillus involutus. Mycotaxon 24: 403–410.

Gardes M., Bruns T. D. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 132–118. http://dx.doi.org/10.1111/j.1365-294x.1993.tb00005.x

Hahn C., Agerer R. 1999. Studium zum Paxillus involutus fermenkreis. Nova Hedwigia 69: 241–310.

Hedh J., Samson P., Erland, S., Tunlid A. 2008. Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus. Mycological Research 112: 965–975. https://doi.org/10.1016/j.mycres.2008.01.026

Henrici A., Kibby G. 2014. Paxillus – an end to confusion? Field Mycology 15(4): 121–127. https://doi.org/10.1016/j.fldmyc.2014.09.007

Jargeat P., Chauneton J-P., Navaud O., Vizzini A., Gryta B. 2014. The Paxillus involutus (Boletales, Paxillaceae) complex in Europe. Fungal Biology 118: 12–31. https://doi.org/10.1016/j.funbio.2013.10.008

Jarosch H., Bresinsky A. 1999. Speciation and phylogenetic distances within Paxillus s. str. Plant Biology 1: 701–706. https://doi.org/10.1111/j.1438-8677.1999.tb00283.x

Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A. 2019. Dictionary of the Fungi. 10th Edition. CABI Publishing: 784 p.

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096

Martin F., Bonito G. H. 2012. Ten years of genomics or ectomycorrhizal fungi. Edible Ectomycorrhizal mushrooms. Springer, Berlin: 383–401.

Martin F., Cullen D., Hibbett D., Pisabarro A., Spatafora J. W., Baker S. E., Grigoriev I. V. 2011. Sequencing the fungal tree of life. New Phytologist 190: 818–821. https://doi.org/10.1111/j.1469-8137.2011.03688.x

Natsional’nyi park “Bashkiriya” [Bashkiriya National Park]. 2022. https://npbashkiria.ru/ (Date of access: 15 IX 2022). [Национальный парк «Башкирия». 2022. https://npbashkiria.ru/ (Дата обращения: 15 IX 2022)].

Rambaut A., Drummond A. J., Xie D., Baele G., Suchard M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/syy032

Rehner S. A., Buckley E. A. 2005. Beauveria phylogeny inferred from nuclear ITS and EF1-sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Svetasheva T. Yu. 2021. Macromycetes of the State Museum-Reserve “Kulikovo Field” vicinities. Diversity of plant world 4(11): 61–79.

Vasar M., Davison J., Sepp S.-K., Mucina L., Oja J., Al-Quraishy S., Anslan S., Bahram M., Bueno C. G., Cantero J. J. et al. 2022. Global soil microbiomes: A new frontline of biome­ecology research. Global Ecology and Biogeography 31(6): 1120–1132. https://doi.org/10.1111/geb.13487

Vellinga E. C., Blanchard E. P., Kelly S., Contu M. 2012. Paxillus albidulus, P. ammoniavirescens and P. validus revisited. Mycotaxon 119: 351–359. https://doi.org/10.5248/119.351

White T. J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications. New York: 315–322.

Winkelmann M., Stangel W., Schedel I., Grabensee B. 1986. Severe hemolysis caused by antibodies against the mushroom Paxillus involutus and its therapy by plasma exchange. Klinische Wochenschrift 64: 935–938.

Zamora J. C., Svensson M., Kirschner R., Olariaga I., Ryman S., Parra L. A., Geml J., Rosling A., Adamčík S., Ahti T. et al. 2018. Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus 9(1): 167–175. https://doi.org/10.5598/imafungus.2018.09.01.10